Preparing to move: assembly of the MSP amoeboid motility apparatus during spermiogenesis in Ascaris.

نویسندگان

  • Maria Antonia Rodriguez
  • Lawrence L LeClaire
  • Thomas M Roberts
چکیده

We exploited the rapid, inducible conversion of non-motile Ascaris spermatids into crawling spermatozoa to examine the pattern of assembly of the MSP motility apparatus that powers sperm locomotion. In live sperm, the first detectable motile activity is the extension of spikes and, later, blebs from the cell surface. However, examination of cells by EM revealed that the formation of surface protrusions is preceded by assembly of MSP filament tails on the membranous organelles in the peripheral cytoplasm. These organelle-associated filament meshworks assemble within 30 sec after induction of spermiogenesis and persist until the membranous organelles are sequestered into the cell body when the lamellipod extends. The filopodia-like spikes, which are packed with bundles of filaments, extend and retract rapidly but last only a few seconds before giving way to, or converting into, blebs. Coalescence of these blebs, each supported by a dense mesh of filaments, often initiates lamellipod extension, which culminates in the formation of the robust, dynamic MSP fiber complexes that generate sperm motility. The same membrane phosphoprotein that orchestrates assembly of the fiber complexes at the leading edge of the lamellipod of mature sperm is also found at all sites of filament assembly during spermiogenesis. The orderly progression of steps that leads to construction of a functional motility apparatus illustrates the precise spatio-temporal control of MSP filament assembly in the developing cell and highlights the remarkable similarity in organization and plasticity shared by the MSP cytoskeleton and the actin filament arrays in conventional crawling cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstitution In Vitro of the Motile Apparatus from the Amoeboid Sperm of Ascaris Shows That Filament Assembly and Bundling Move Membranes

We have developed an in vitro motility system from Ascaris sperm, unique amoeboid cells that use filament arrays composed of major sperm protein (MSP) instead of an actin-based apparatus for locomotion. Addition of ATP to sperm extracts induces formation of fibers approximately 2 microns in diameter. These fibers display the key features of the MSP cytoskeleton in vivo. Each fiber consists of a...

متن کامل

Supramolecular assemblies of the Ascaris suum major sperm protein (MSP) associated with amoeboid cell motility.

Sperm of the nematode, Ascaris suum, are amoeboid cells that do not require actin or myosin to crawl over solid substrata. In these cells, the role usually played by actin has been taken over by major sperm protein (MSP), which assembles into filaments that pack the sperm pseudopod. These MSP filaments are organized into multi-filament arrays called fiber complexes that flow centripetally from ...

متن کامل

Hydrostatic Pressure Shows That Lamellipodial Motility in Ascaris Sperm Requires Membrane-associated Major Sperm Protein Filament Nucleation and Elongation

Sperm from nematodes use a major sperm protein (MSP) cytoskeleton in place of an actin cytoskeleton to drive their ameboid locomotion. Motility is coupled to the assembly of MSP fibers near the leading edge of the pseudopod plasma membrane. This unique motility system has been reconstituted in vitro in cell-free extracts of sperm from Ascaris suum: inside-out vesicles derived from the plasma me...

متن کامل

Localized Depolymerization of the Major Sperm Protein Cytoskeleton Correlates with the Forward Movement of the Cell Body in the Amoeboid Movement of Nematode Sperm

The major sperm protein (MSP)-based amoeboid motility of Ascaris suum sperm requires coordinated lamellipodial protrusion and cell body retraction. In these cells, protrusion and retraction are tightly coupled to the assembly and disassembly of the cytoskeleton at opposite ends of the lamellipodium. Although polymerization along the leading edge appears to drive protrusion, the behavior of sper...

متن کامل

Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin).

Spermiogenesis is a series of poorly understood morphological, physiological and biochemical processes that occur during the transition of immotile spermatids into motile, fertilization-competent spermatozoa. Here, we identified a Serpin (serine protease inhibitor) family protein (As_SRP-1) that is secreted from spermatids during nematode Ascaris suum spermiogenesis (also called sperm activatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell motility and the cytoskeleton

دوره 60 4  شماره 

صفحات  -

تاریخ انتشار 2005